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Abstract

Background: Structural equation modeling (SEM) is a popular analysis technique because of the wide
range of questions that it can help answer. There are several pieces of information specific to SEM that
should be reported when this technique is used.

Objectives: To demonstrate a basic framework for reporting SEM analyses, to provide definitions of key
terms readers will encounter, and to illustrate 2 examples for reporting SEM results.
Methods: Data from 650 participants who completed 3 self-report surveys were used to test a confirmatory

factor analysis and a structural model as examples of information to be reported.
Results: The results displayed are requisite information for any SEM analysis.
Conclusions: It is important for investigators to provide this information so that readers can properly

evaluate the results and conclusions based on the analyses.
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Introduction

Structural equation modeling (SEM), or latent
variable analysis, is a useful technique because

a wide variety of data, research designs, and
theoretical models can be analyzed. Many social
science researchers are interested in measuring and

understanding the relationships among latent, un-
observable, variables. The purpose of this paper is
to provide a basic description of important in-

formation that should be provided in the report of
any SEManalysis. Included are 2 examples of SEM
analysis reports and a brief description of common

statistical packages used in SEM.
The language of SEM

A firm understanding of any analysis technique
begins with an ability to comprehend the basic

terminology used. For SEM, readers must be able
to interpret the common graphical representations
of theorized models presented. There are 2 basic

types of variables: unobserved and observed.
Unobserved variables called, latent factors, factors,
or constructs are graphically depicted with circles

or ovals (Fig. 1). Common factor is another term
used for latent factors because of the shared
effects in common with 1 or more observed

variables.
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Fig. 1. Generic CFA example of 3 latent variables and 12 observed variables.
Observed variables are also termed measured,
indicator, or manifest. A square or rectangle is
the traditional graphic for observed variables

(Fig. 1). In Fig. 1, the large circles represent the
latent constructs and the small circles represent
the unique factorsdmeasurement errorsdin the

observed variable or disturbances in equation,
measurement, or both. Errors are variance in the
responses that are not explained by the latent

construct. Single head and dual head arrows are
called paths. Single-head arrows (paths) represent
directional effects from 1 variable (latent or ob-
served) to another and dual-head arrows represent

a correlation or relationship. An example of an
unobserved variable is Life Satisfaction (LS) and
an observed variable is the response to a particular

question related to LS, such as ‘‘I enjoy spending
time with my family.’’

In the diagram, the regression coefficient, the

direction and magnitude of the relationship, is set
at 1 for each path. Because error is unobserved,
there is no specific measurement unit. As such,

a value must be set, and a value of 1.0 is most
common. The value could be set to a different
number to scale the measurement error; however,
most software programs are designed so that 1 is
the default or easiest setting.

SEM generally encompasses 2 components:

a measurement model (ie, confirmatory factor
analysis, CFA) and a structural model (Figs. 1
and 2, respectively). In this context, a model is

the theoretical relationships among the variables.
The measurement model specifies the relationship
of the latent to the observed variables, whereas the

structural model (directional paths in bold in
Fig. 2) identifies specific relationships among the
latent variables.1 Two other terms associated
with SEM are exogenous, similar to independent

variables, and endogenous, similar to dependent/
outcome variables. Path-analytic models, which
can also be thought of as only the structural anal-

ysis, are not discussed in this paper. But, the infor-
mation that should be provided in those reports is
the same.

The premise of SEM is to determine if a theo-
retical model is supported by the data collected.
Mathematically, it is the comparison of an ob-

served covariance matrix and a reproduced co-
variance matrix. The reproduced matrix is based
on the mathematical equations derived from the
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Fig. 2. Generic structural model.
specified theoretical model. The more the repro-

duced matrix deviates from the observed matrix,
the less the theorized model fits the data. Finally,
SEM allows the researcher to test hypothesized

direct relationships between independent and de-
pendent variables, such as multiple regression, and
allows for the testing of indirect or mediated rela-
tionships between observed and unobserved latent

variables while examining the reliability of the
items to the latent variables.

Nonanalytic concepts

There are several nonanalytical and analytical
concepts related to SEM that should be under-
stood when reading or reporting results (Table 1).

Three basic nonanalytic concepts are important
for reporting: (1) a well-developed theoretical
model, (2) operational definitions of the latent

variables, and (3) graphical representation of the
theorized model. A theoretical framework is ex-
pected in every report that explains and justifies

the model to be tested. Within the framework,
operational definitions of the latent constructs
should be clearly delineated. A graphical
representation of the theorized model should be

presented for the readers. The graphic can be
used as an advanced organizer for the reader
that specifies theorized relationships. Those theo-

rized relationships are the hypotheses that will
be tested, and a graphic display consumes less
space and is easier to read and interpret than
a large list of written hypotheses in the narrative

of the report.

Analytical concepts

The analytical concepts are discussed and
follow the pattern in the checklist in Table 1.
The following discussion does not follow the
checklist line by line, but the information on the

checklist is discussed.

Sample size

SEM requires large sample sizes, which affects
sampling error. The general rule of thumb is 20
cases for each free parameter, but 10 is a more

likely target.2 A free parameter (value), such as
a coefficient, is 1 that is to be estimated in the
analysis; that is, it is not specified before analysis



86 Schreiber/Research in Social and Administrative Pharmacy 4 (2008) 83–97
by the researcher. For example, if the theorized
model has 15 free parameters to estimate, then
a sample size between 150 and 300 participants
is recommended. Power analysis is also an impor-

tant consideration when selecting sample size for
SEM analyses. Power at the coefficient level
(path) can be examined.3 Researchers, though,

tend to think about power at the model level. Es-
timated power and the associated minimum
sample size have been studied.4,5 In general, the

smaller the degrees of freedom for the model,
the larger the sample size needed to reach a power
of 0.80 for the model. For example, with degrees

of freedom of 45, power of 0.80, and a model fit
index, root mean square error of approximation
(RMSEA)¼ 0.05, the minimum sample size is

Table 1

Checklists for SEM reporting

Nonanalytic reporting

Well-developed theoretical framework

Theorized model display

Operational definitions

Analytic reporting

Sample size

Original and final

Missing data

How handled (listwise deletion, imputed means.)

justified?

Specification/identification

Normality

Outliers

Linearity/multicollinearity (are variables too correlated

O0.90)

Software and estimation method stated: justified?

Power

Assessment of fit

Model Chi-square

Multiple fit indices justified

Parameters estimated and significant tests

Squared multiple correlation (CFA) variance

accounted for (SEM)

Standardized and unstandardized estimates

Residual analysisdpredicted and actual covariance

matrix examination

Correlation and means tables

Modifications

Rationale for modification

Lagrange test for adding paths

Wald test for dropping paths

Correlation between estimated parameters

(hypothesized & final models)

Equivalent model

Diagram of final model
252. If the degrees of freedom change to 8, then
the minimum sample size increases to 954.4

Sample size can be referenced to the number of

observations (participants) per items in a survey
for example. Rules of thumb such as 5-10 obser-
vations per item are common to see, but that
range is acceptable as long as the variable

distributions are normal or elliptical and the
latent variables have multiple indicators (eg,
items). For readers, it is important for the authors

to discuss sample size in reference to the number
of observed variables, free parameters, distribu-
tion of the data, and complexity of the model

tested.

Missing data
Respondents commonly fail to complete every

item on a survey or instrument. Missing data are
a serious concern because the results may be

biased, or in error. There are 3 different types of
missing data: missing completely at random
(MCAR), missing at random (MAR), and non-

ignorable.6 MCAR occurs when the missing data
are not related to any group of participants or
any other variable. MAR occurs when data may

be missing at random, for example, persons with
lower ‘‘socioeconomic status’’ may be less likely
to provide their current health level, but upon

examination of the variable ‘‘health level,’’ it is
unrelated to the variable ‘‘socioeconomic status.’’
Nonignorable missing data are most serious,
because the data are missing as a function of an-

other variable. For example, more males failed
to respond to socioeconomic status items than
females.

Several approaches for dealing with the miss-
ing data, such as pairwise deletion, listwise de-
letion, regression, multiple imputation, full

information maximum likelihood (FIML), and
expectation maximization (EM) algorithm, are
available.6,7 In general, pairwise deletion occurs

when cases, or participants, are deleted from the
analysis if they are missing from that part of the
analysis, but are included in other analyses if the
data are complete. Pairwise deletion is not recom-

mended because sample size can change depend-
ing on which variables are being analyzed. This
can lead to mathematical problems such as

a 0 in the denominator of an inverted matrix.
Pairwise also greatly limits the ability to generalize
the results of the sample to the population. List-

wise is acceptable but is best used when the data
are MCAR. It is robust with MAR if the missing
values of the independent variables do not depend
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on the values of the dependent or outcome vari-
able. If data are MAR, FIML is recommended.
If the data are nonignorable, FIML estimates
will tend to be the least biased.6 The methods

and rationale for handling missing data should
be provided in any report, along with a brief dis-
cussion of the strengths and limitations of that

method.8

Specification
Specification involves the selection of variables

for inclusion in the model. For a measurement
model, the problem occurs in determining if the
observed variables are correctly ‘‘connected’’ to
the latent variables. For a structural model, the

failure to include relevant variables will create
a specification error. A specification error will
cause the estimations to be incorrect and therefore

result in inappropriate inferences.

Recursive and nonrecursive models
A model is recursive if all the paths flow one

way with no feedback or reciprocal loops and the
errors are uncorrelated. Figs. 1 and 2 are recursive
models. Nonrecursive models can have feedback
loops or correlated errors. Fig. 3a is nonrecursive

due to the feedback paths between the endoge-
nous Y variables. There are actually partially re-
cursive models that can be treated as recursive

because there is no direct relationship between
the endogenous variables, even though the errors
are correlated (Fig. 3b). This is important because

of increased possibility of an identification prob-
lem (see below), which will result in an estimation
problem. Fig. 3c is considered nonrecursive be-
cause of the directional path between endogenous

Y variables.
Identification
As has been stated, ‘‘If life were fair, the

researcher could proceed from specification to
collection of the data to estimation. Unfortu-

nately, .the analysis.is not always so straight
forward.’’2 A model is identified if there is a theo-
retically possible unique estimate for each param-

eter. A larger sample will not solve an
identification problem because a general require-
ment for identification is related to the relation-

ship between the number of free parameters and
the number of observed variables, not sheer sam-
ple size. The number of free parameters should be

equal to or greater than the number of observed
variables, that is, the degrees of freedom must be
greater than 0. Based on this general requirement,
there are 3 general types of model identification:

underidentified, where the degrees of freedom
are less than 0; overidentified, where the degrees
of freedom are greater than 0; and just-identified,

where the degrees of freedom equal 0. Most statis-
tical packages provide information about the
identification of the analyzed model and whether

there is an identification problem by indicating
that the solutions provided are not admissible;
otherwise, the software program will fail to com-

plete the analysis, altogether.

Estimation methods and normality issues

Estimation concerns the procedure to be used
to derive the parameter estimates, such as the
coefficients and standard errors. Although the

most common is maximum likelihood (ML) and
is the default on most programs, the type of data
one has (nominal, ordinal, etc) and the distribu-
tional qualities (eg, skew and kurtosis) of those

data should determine the estimation method to
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be used. For normally distributed data, ML is
a full information method where all parameters
are estimated at once.9 Normally distributed data

are symmetrical about the mean. Generalized least
squares (GLS) and unweighted least squares
(ULS) are also full information. GLS is part of
the weighted least squares (WLS) family, and

ULS requires all observed variables to have the
same scale.2,7

If the data are continuous but non-normal,

there is always the option to transform the data. A
corrected normal theory method can be used
wherein the parameters are estimated with ML

along with robust standard errors or corrected test
statistics. When the data are non-normal, do not
follow a normal bell curve distribution, and the
non-normality is not corrected, the standard

errors can be too low, which results in an
erroneous rejection of the null hypothesis. Also,
the Chi-square value, which is an indicator of how

well the data fit the model, can be inflated, which
will result in the rejection of true models based on
exact fit tests (see below). The Satorra-Bentler

method is a correction that adjusts the Chi-square
value lower based on the size of observed kurtosis.10

An asymptotically distribution free (ADF) method

is possible, but it requires very large sample sizes,
such as 2500 cases. ADF estimation does not as-
sume normal distribution of the variables or
multivariate normality; therefore, if the data

are skewed, ADF estimation is a technique for
dealing with that problem.

The decision rule of thumb, for an individual

variable, has been an absolute value of skew
greater than 1, transform the data. Simulated
data research indicates that ML estimation with

robust standard errors can be used with skewness
below 2 and kurtosis below 7.11

Likert-type scales, for example, strongly dis-
agree to strongly agree, common in survey-based

research are technically ordered categorically, that
is, there is an underlying continuum, but each
choice is a separate category. Although there is no

consensus on how to handle Likert-type scales
with 3-5 categories, ordered categorical data can
be estimated with the WLS family of estimators.

For example, the MPlus program uses WLS with
robust standard errors and adjusted Chi-square
statistics.7 And LISREL 8.80 uses diagonally

WLS.12 If there are different types of data, cate-
gorical, ordered categorical, and continuous in
the data set, then an appropriate estimation
method needs to be chosen. 7 The data could be

transformed, that is, standardized, but with the
available technologies the raw data analysis is
possible. Although a technical discussion of these
estimation procedures is beyond the scope of this

article, it is important that the estimation method
is justified and explained with reference to the type
of data and the distributional properties (normal/
non-normal) of the data.

Fit indices

There are numerous fit indices. A fit index
provides a global examination of how well the
collected data fit the hypothesized model. Re-

searchers typically have personal fit preferences,
but common fit indices for a single analysis are
comparative fit index (CFI), Tucker-Lewis index

(TLI, or non-normed fit index), and RMSEA.2,13

Most statistical packages that run SEM models
produce numerous fit indices. Table 2 provides
a list of some of the major indices with general

cutoff levels for a good fit. The model Chi-square
value and degrees of freedom should be reported
because some fit indices are based on those values.

The model Chi-square is a badness of fit index
because in general the higher the Chi-square value
the more likely a statistically significant result in-

dicating the worse the data fit the model. Chi-
square and the degrees of freedom are expected
to be reported, but are not typically used to justify

the fit of the data to the model because the Chi-
square value is affected by sample size. That is,
large sample sizes will cause the Chi-square value
to be statistically significantly different from

0 even when the fit of the data to the model is
good.

The RMSEA is also a badness of fit index,

wherein the higher the value the worse the data fit
the model. An overall RMSEA less than or equal
to 0.06, and a confidence interval range from 0.00

to 0.08 indicates a close or good fit.14 For exam-
ple, an RMSEA of 0.056 with a lower bound of
0.02 and upper bound of 0.08 would be considered

a close fit. There are mixed outcomes with
RMSEA where the overall value is below 0.06
and the lower value is 0.00 and the upper value
is over 0.10. This happens more often with small

samples, but is a good reminder that fit indices
are sample statistics that are affected by sampling
error.2

The CFI is based on a ratio of the Chi-square
of the tested model and the independent or null
model. The range of values for the CFI is 0 to 1,

but a value of 1 does not indicate a perfect fit, just
that the Chi-square of the model is less than the
degrees of freedom of the model tested. Generally,
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Table 2

A list of popular fit indices

Abbreviation General rule for acceptable fit if data are continuo

Absolute/predictive fit indices

Chi-square c2 Ratio of c2 to df % 2 or 3, useful for nested model

Akaike information criterion AIC Smaller the better; good for model comparison (no

Browne-Cudeck criterion BCC Smaller the better; good for model comparison, no

Bayesian information criterion BIC Smaller the better; good for model comparison (no

Consistent AIC CAIC Smaller the better; good for model comparison (no

Expected cross-validation index ECVI Smaller the better; good for model comparison (no

Comparative fit indices Comparison to a baseline (independence) or other

Normed fit index NFI R0.95 for acceptance

Incremental fit index IFI R0.95 for acceptance

Tucker-Lewis index TLI R0.95 can be 0 O TLI O 1 for acceptance

Comparative fit index CFI R0.95 for acceptance

Relative noncentrality fit index RNI R0.95, similar to CFI but can be negative, therefo

Parsimonious fit indices

Parsimony-adjusted NFI PNFI Very sensitive to model size

Parsimony-adjusted CFI PCFI Sensitive to model size

Parsimony-adjusted GFI PGFI The closer to 1 the better, though it is typically low

and sensitive to model size

Other indices

Goodness-of-fit index GFI R0.95 Not generally recommended

Adjusted GFI AGFI R0.95 Performance has been poor in simulation st

Root mean square residual RMR The closer to 0 the better

Standardized RMR SRMR %0.08

Weighted root mean residual WRMR !0.90

Root mean square error of

approximation

RMSEA !0.06-0.08 with confidence interval

Sivo et al’s fit values are based on a sample size of 500 and indicate the optimal index value without reje



90 Schreiber/Research in Social and Administrative Pharmacy 4 (2008) 83–97
a value equal to or above 0.95 has been considered
a good fit.14 The comparison of the baseline
model versus the null has been critiqued as not

overly informative.15 Researchers can choose to
constrain different paths to test and use as alterna-
tive null models.15

One recent simulation indicates that fit values

are affected by sample size, complexity, and
misspecification of the model.16 For example, for
a simple confirmatory model, the RMSEA value

for a sample size of 500 should be 0.03 to ensure
the rejection of all misspecified models; however,
for the standardized root mean square residual

(SRMR), the value would be 0.15, which is con-
sidered quite high.16

The fit indices discussed above are used for
continuous data but work has been conducted

with categorical data. The TLI and CFI values,
for categorical data, should be greater than or
equal to 0.95 and the RMSEA, the value should

be less than or equal to 0.06.17 Another index, the
weighted root mean square residual (WRMR),
should have a value less than 0.90 for both contin-

uous and categorical data.17

Because there is continued research on fit
indices, it is important that citations for the fit

value are relatively current, for example, within
5-10 years of the current date. Finally, there
should be justification for the group of fit indices
provided and those values should converge to

a conclusion that the data fit the theorized model.
It is important to judge the overall fit from
multiple indices and not just a single fit index.14

Nested models

Nested models are modified versions of the
original theorized model. Nested models occur
when researchers add or remove relationships

among observed or latent variables after analysis.
The core of this postanalysis should be an
examination of the coefficients of hypothesized

relationships. Many times, the examination and
discussion of the coefficients are secondary to the
fit, but they should not be. In other words, the
researcher examines the significance of individual

structural paths representing the impact of one
latent construct on another or the latent construct
on the observed variable as is the case with CFA.

The statistical significance of path coefficients are
established through an examination of the
t-values or z-values (depending on the software)

associated with structural coefficients. The au-
thors also could provide the standard errors in
combination with the unstandardized estimates.
It is important to note that a standardized coeffi-
cient can be greater than 1 and does not indicate
that there is something wrong, but there might

be a high degree of multicollinearity, 2 variables
highly correlated, for example, will bias the
results.18

SEM is an a priori method; therefore, the re-

moval or addition of a relationship (direct/indi-
rect or correlated), called a modification, must
make theoretical, not just statistical sense. Basing

modifications to the hypothesized model only on
statistical results may lead to a final model that
highlights quirks or unique characteristics of the

sample that are not representative of the popula-
tion. Typically, removing a path will result in
a higher or worse Chi-square value and adding
a path will lower the Chi-square value. Modifica-

tion values, which indicate which paths should be
added or removed, can be produced by many of
the software programs. The value is either the

Langrange multiplier, which examines how much
the Chi-square would decrease if a specific path
was added, or the Wald statistic, which examines

how much the Chi-square would increase if a spe-
cific path was removed.2

Once a modification is made (also called model

trimming or building), the original model and the
new model should be compared. The comparison
is a Chi-square difference test, which tests the null
hypothesis of identical fit between the 2 models.

For example, if the original model Chi-square was
21.25 with 5 degrees of freedom and the new
model with a path added has a Chi-square of

13.21 with 4 degrees of freedom, with a resultant
statistical significance of P¼ .004, the new model
is a better fit. If multiple systematic modifications

are made, authors should report fit indices with
the first and final model. It should be noted that
once modifications have been completed the anal-
ysis has moved from confirmatory to exploratory.

Researchers often respecify or modify the original
model when parameter estimates are statistically
nonsignificant.

Abuse of fit indices occurs when the researcher
becomes fascinated with improving the fit. This
abuse has been described similarly to eating salted

peanuts, ‘‘one is never enough.’’19,p750 For the
purposes of reporting, it is important that each
modification made based on statistical criteria is

also justified theoretically.

Alternative models
When testing alternative models with the same

data that are not nested or hierarchically related,
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the Chi-square test between old and new models is
not appropriate. There are 2 good choices for the
researcher at this point for fit index comparison:
the Akaike Information Criterion (AIC) and the

Bayesian Information Criterion (BIC). In general,
the model with the lowest value is best. For exam-
ple, if the BIC value for alternative A is 2311.12,

and for B the value is 1679.13, alternative B would
be the preferred model.

Researchers may consider mathematically

equivalent models.20 An equivalent model should
provide the same predicted correlation or covari-
ances but with different paths among the manifest

variables.2,20 If examining mathematically equiva-
lent models, the chosen model must be justified
over the other mathematically identical models.

Residuals
The residuals, sometimes labeled correlation

residuals, fitted, or standardized, are the difference

between the observed score and the predicted
score based on the model and should be discussed
in any SEM report (Fig. 4). The general rule of

thumb is to look for correlation residuals (fitted
residuals) that have an absolute value greater
than 0.10. The more residuals over 0.10 the less
explanatory the model is to the data. In Fig. 4, ap-

proximately 8% of the residuals are greater than
an absolute value of 0.10. There is no rule for
how many residuals over 0.10 indicate a problem,

but as the incidence of these larger residuals
increases, the model’s explanatory power deterio-
rates. Software programs provide different types
of outputs. Fig. 4 is a histogram and frequency
plot from EQS 6.1.21 The major statistical pack-

ages provide some form of residual matrix that
should be discussed.22 A discussion of the stan-
dardized form of the residuals is preferred. The

standardized residual values enable the researcher
to determine the number of standard deviations of
observed residuals from 0 residuals that should

exist if the causal model fits perfectly.22A Q-plot,
which graphs the standardized residuals in com-
parison to a 45� line, displays residual values

that depart extremely from the Q-plot line, which
provides evidence that the model is in some way
misspecified.22

CFA and SEM examples

The measurement model of SEM is a CFA
(Fig. 1) and depicts the pattern of observed vari-
ables for those latent constructs in the hypothe-

sized model. The objective for CFA is to test the
reliability of the observed variables and provide
a rigorous test of convergent and discriminant val-
idity.2,23 Second, the measurement model exam-

ines the extent of interrelationships, covariation
(or lack thereof), among the latent constructs,
themselves. As part of the process, factor load-

ings, unique variances, and modification indices,
----------------------------------------
!                                      !

60-                                      -
!                                      !
!                 *                    !
!                 *                    !
!                 *                    !            RANGE      FREQ PERCENT

45-                 *                    -                      
!                 *  *                 !    1   -0.5  -  --       0    .00%
!                 *  *                 !    2   -0.4  -  -0.5     0    .00%
!                 *  *                 !    3   -0.3  -  -0.4     0    .00%
!                 *  *                 !    4   -0.2  -  -0.3     0    .00%

30-                 *  *                 -    5   -0.1  -  -0.2     3   2.86%
!                 *  *                 !    6    0.0  -  -0.1    53  50.48%
!                 *  *                 !    7    0.1  -   0.0    43  40.95%
!                 *  *                 !    8    0.2  -   0.1     4   3.81%
!                 *  *                 !    9    0.3  -   0.2     2   1.90%

15-                 *  *                 -    A    0.4  -   0.3     0    .00%
!                 *  *                 !    B    0.5  -   0.4     0    .00%
!                 *  *                 !    C     ++  -   0.5     0    .00%
!                 *  *                 !    -------------------------------
!              *  *  *  *  *           !            TOTAL       105 100.00%
----------------------------------------                     

1  2  3  4  5  6  7  8  9  A  B  C      EACH "*" REPRESENTS  3 RESIDUALS

Note: The more residuals over the absolute value of .10, the less explanatory power the model has.

Fig. 4. Residual histogram and frequency chart. The more residuals over the absolute value of 0.10, the less explanatory

power the model has.



92 Schreiber/Research in Social and Administrative Pharmacy 4 (2008) 83–97
are estimated to derive the best indicators of latent
variables before testing a structural model.

CFA is theory driven. Therefore, the planning

of the analysis is driven by the theoretical relation-
ships among the observed and unobserved vari-
ables. When a CFA is conducted, the researcher
uses a hypothesizedmodel to estimate a population

covariance matrix which is compared to the
observed covariance matrix. Mathematically, the
researcher wants to minimize the difference be-

tween the estimated and observed matrices.

CFA example

The example for this article is based on
employees’ relationships and behaviors within an

organization. The data used here are not for peer-
reviewed empirical results, but rather, only for
example purposes. Therefore, a full theoretical

framework is not provided here, but is expected in
a research report. A CFA with results is depicted
in Fig. 5. In this example, there are 3 latent
variables, LS, turnover intent (TI), and organiza-
tional citizenship behavior (OCB), with 12 mani-
fest or observed variables. All 3 latent variables

are measured with statement-based self-report in-
struments and a Likert-type scale. The scales for
each range from 1 to 6 with 1 being strongly dis-
agree and 6 being strongly agree. If the data being

analyzed were composed of different types of
data, such as categorical, continuous, or order
categorical, it would be important to choose an

estimation method appropriate for that set of
data.7 LS refers to an employee’s overall impres-
sion of their life and various aspects of their life,

such as family. An example item is, ‘‘I am happy
when I think about my family.’’ TI refers to the
overall impression that the employee is seeking
new employment with another firm. An example

item is, ‘‘Each week, I read open position adver-
tisements in my field.’’ OCB refers to an employee
assuming extra voluntary roles, or discretionary

behavior, that contributes to organizational effec-
tiveness. An example item is, ‘‘I commonly put in
Turnover
Intent

Organizational
Citizenship
Behavior

TI Q1
.77

TI Q2
.81

OCB Q1
.61

TI Q3
.72

OCB Q3
.67

OCB Q4
.76

e

Chi-square = 378.26, df = 51  CFI = .97 TLI .96 RMSEA = .05
Standardized Results are presented with Square Multiple Correlations in Italics

e e e e e

Life
Satisfaction

.83.71

LS Q1 LS Q2 LS Q3 LS Q4
.77 .59

OCB Q2
.66

TI Q4
.74

e e

eeee

.88
.78

.77

-.96

.91.84
.88

-.90

.84

.90 .85
.86

.81 .82
.88

Fig. 5. Results and final model of CFA.
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extra time on meetings to make sure the organiza-
tion runs smoothly.’’ The data for this study
should not be cited as actual results. The data
are real, but due to a confounding effect during

data collection, cannot be used for peer-reviewed
empirical results. Therefore, it is used as an exam-
ple here.

In Fig. 5, the large circles are the unobserved
or latent variables, LS, TI, and OCB. The small
circles with the letter ‘‘e’’ are the unique factors,

or measurement errors, in the variables. The
unique factors differ from the latent factors
because their effect is associated only with 1 ob-

served variable. The straight line pointing from
a latent variable to the observed variables indi-
cates the ‘‘causal’’ effect of the latent variable on
the observed variables. The curved double-head

arrow between latent variables indicates a correla-
tion. If the curve was changed to a straight
1-headed arrow, a hypothesized direct relation-

ship between the 2 latent variables would be indi-
cated. A directional path would be considered
a structural component of the model. In the exam-

ple, all of the latent variablesdincluding the er-
rorsdare unobserved exogenous and all of the
manifest variables are observed endogenous.

The diagram is the hypothesized model that is
to be tested to see how well it ‘‘fits’’ the observed
data. Mathematical equations describe the pic-
tured relationships. Presentation of those equa-

tions is beyond the scope of this article.19,24,25
Results for the CFA
For this example, 650 respondents were asked

to complete a series of surveys. Of those 650, 629
completed surveys were collected. A missing data

analysis was completed to examine the relation-
ships between missing values on each variable,
including demographic characteristics. No statis-

tically significant relationships were observed.
Therefore, a listwise deletion procedure was
used. The data are skewed but below an absolute

value of 2, so ML estimation with robust standard
errors was used. 11 The software used was MPlus,
version 2.14.7 Based on the number, sample size,

degrees of freedom (51), and the number of free
parameters (27), there appears to be enough statis-
tical power. Finally, the correlation table was ex-
amined for multicollinearity and no relationships

were above O0.90. High bivariate correlations
cause operational problems with the matrices in-
volved with CFA and SEM. This topic is beyond

the scope of this article.
The fit indices indicate a good fit of the data to

the hypothesized structure. The CFI is 0.97, the

TLI is 0.96, and the RMSEA is 0.05, with a 90%
confidence interval of 0.04-0.08. All 3 of these
values indicate a good fit.14 CFI and TLI may be

low and theRMSEAmay be high, given the sample
size.16 All items loaded statistically significantly
(P ! .05) on the theorized latent variables, and
no modifications were warranted based on the

values calculated (Table 3). A random assortment
Table 3

Confirmatory Factor Analysis Example

Standardized and Unstandardized Regression Weights and Squared Multiple Correlations (SMC)

Standardized Unstandardized (se) SMC

OCB TI LS OCB TI LS

OCB Q1 .78 1.00 (.00) 0.61

OCB Q2 .81 1.07 (.03) 0.66

OCB Q3 .82 1.07 (.03) 0.67

OCB Q4 .88 1.11 (.03) 0.77

LS Q1 .88 1.00 (.00) 0.77

LS Q2 .84 1.10 (.02) 0.71

LS Q3 .91 1.06 (.02) 0.83

LS Q4 .77 .92 (.02) 0.59

T1 Q1 .88 1.00 (.00) 0.77

TI Q2 .90 .93 (.02) 0.81

TI Q3 .85 .89 (.02) 0.72

TI Q4 .86 .88 (.02) 0.74

Note: Statistically Significant p !.05 in bold.

OCB, Organizational Citizenship Behavior;

LS, Life Satisfaction;

TI, Turnover Intent.
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of items led to fit indices of 0.90 for the TLI and
0.09 for the RMSEA. No multivariate outliers or
large residuals based on the observed and repli-

cated covariance matrices were observed.
Standardized values are provided in Fig. 5.

Unstandardized values with standard errors are
in Table 3. In Fig. 5, the italicized values are the

squared multiple correlations and are an indicator
of lower bound of reliability for that item. It is cal-
culated by squaring the standardized coefficient

(eg, 0.782¼ 0.61). The observed data appear to
fit the hypothesized model and there are large cor-
relations among the latent variables. Finally, be-

cause each item only loaded on 1 factor, there is
evidence of convergent and discriminant validity.7

A second test for discriminant validity is to con-
strain (fix) the relationships between the latent

constructs to 1. In this example, doing so causes
the Chi-square value to increase to over 1969
with the df equal to 54. Examining the Chi-square

from the tested model to this constrained model
difference, which is statistically significant, indi-
cates that the relationships are not 1 thus
providing discriminant validity evidence. Even
with the Chi-square difference, these data appear
to indicate that LS and TI are highly related.

Though it is typical and appropriate in research
studies to provide internal consistency values of the
scores from the items with the latent constructs
once aCFA is run, those values are less of a concern

in CFA because 1 can have high internal consis-
tency (O0.80) across a set of responses from
a survey, yet still have multiple constructs. The

internal consistency values for these data are all
above 0.90. Also, reliability and validity are
a quality of the responses from instruments, and

not the instruments, therefore these values need to
be recalculated each time scores are obtained from
the responses to the instruments.

SEM example

SEM has been described as a combination of

exploratory factor analysis and multiple regres-
sion,19 at least in part because although SEM is
a confirmatory technique, it can also be used for
Turnover
Intent

Organizational 
Citizenship
Behavior

TI Q1
.77

TI Q2
.81

OCB Q1
.61

TI Q3
.72

OCB Q3
.67

OCB Q4
.77

e

Chi-square 378.26 df = 51   CFI = .97 TLI .96 RMSEA = .05
Standardized Results are presented with Square Multiple Correlations in Italics

e e e e e

Life
Satisfaction

LS Q3
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LS Q2
.71

LS Q1
.77

LS Q4
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OCB Q2
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.74
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eeee
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.78
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.88
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Fig. 6. Results of SEM.
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exploratory purposes. SEM, in comparison to
CFA, extends the possibility of relationships
among the latent variables and encompasses 2
components: a measurement model (essentially

the CFA) and a structural model. In Figs. 2 and
6, the structural component of the model is high-
lighted by the directional paths in bold. The struc-

tural model displays the direct and indirect effects
among latent constructs and observable variables
in the proposed model as a succession of structural

equationsdakin to running several regression
equations.

There is no consensus on the wording that

should be used with structural models, and
therefore, readers will see the term ‘‘cause’’ or
phrase ‘‘causal modeling’’ or ‘‘direct-,’’ ‘‘indirect-,’’
and ‘‘total-’’ effects. For this example, the direct,

indirect, and total language is used to highlight
different aspects of the results. A direct effect
(Figs. 2 and 6) represents the effect of an indepen-

dent variable (exogenous) on a dependent variable
(endogenous). In the diagrams, LS and TI each
have a direct effect on OCB, and LS has an indi-

rect effect on OCB through TI. That is, TI is act-
ing as a mediating variable.26 For this example, TI
is both an exogenous and an endogenous variable.

A missing data analysis was completed to
examine the relationships between missing values
on each variable and other demographic informa-
tion. No statistically significant relationships were

observed. Therefore, a listwise deletion procedure
was used. The data are skewed but below an
absolute value of 2, so ML estimation with robust

standard errors was used. 11 The software used was
MPlus version 2.14.7 Based on the number sample
size and degrees of freedom (51) and the number of

free parameters (27), there is enough power.
Standardized coefficient values are provided in

Fig. 6, and unstandardized values with standard
errors are presented in Table 4. Table 5 has the

means, standard deviations, and correlations. In
Fig. 5, the italicized values are the squared multi-
ple correlations and are an indicator of lower

bound of reliability for that item. It is calculated
by squaring the standardized coefficient (eg,
0.782¼ 0.61). The observed data appear to fit

the hypothesized model based on the fit indices.
The structural analysis indicates that LS has

a statistically significant direct positive effect on

OCB indicating that the higher LS is, the more
employees are performing extra role behaviors.
LS also has an indirect effect on OCB through TI.
The more you are satisfied with your life, the less

likely you are to contemplate a job switch, but you
are more likely to perform extra role behaviors.
LS and TI account for 95% of the variance in
OCB. LS accounts for 71% of the variability in TI
scores.

Although the focus of structural modeling is to
estimate relationships among hypothesized latent
constructs, structural modeling can be used to test

experimental data where 1 or more of the vari-
ables have been manipulated. Nested data, such as
clients nested within physicians and physicians

nested within geographical regions, and trajectory
models such as different paths of anxiety over time
can also be analyzed within the SEM framework.

In sum, SEM allows researchers to test theoretical
propositions regarding how constructs are theo-
retically linked and the directionality of theoret-
ically important relationships.

Software programs

Below is a brief description of several of the
most common software programs for SEM.

MPlus 4.0

MPlus is a Microsoft Windows program that

can be used to analyze a variety of categorical and
continuous latent variable models with both
continuous and categorical data.7 The program
can analyze the models presented here, plus

growth, multilevel, latent class, and cohort model-
ing, to name a few. Missing data can be estimated
with ML. The interface for programming can be

run through a Language Generator or pro-
grammed line-by-line by the researcher. A trial,
or student, version is available for download at

www.statmodel.com.

Table 4

Results from the Sample SEM Analysis

SEM Example

Standardized Unstandardized (se)

Direct LS OCB LS OCB R2

OCB 0.84 .94(.02) 0.95

TI �0.71 �0.30 �.67(0.03) �.28(.02) 0.71

Indirect

TI �0.26
Total

OCB .84

TI -.96 -.30

OCB ¼ Organizational Citizenship Behavior

LS ¼ Life Satisfaction

TI ¼ Turnover Intent.

http://www.statmodel.com
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Table 5

Correlations, means, and standard deviations of individual items for each latent construct

Item 1 2 3 4 5 6 7 8 9 10 11 Mean SD

1 LS 1 5.16 1.00

2 LS 2 0.77 4.96 1.16

3 LS 3 0.77 0.72 5.18 1.02

4 LS 4 0.60 0.62 0.70 5.12 1.05

5 TI 1 �0.62 �0.70 �0.59 �0.49 5.19 1.04

6 TI 2 �0.65 �0.64 �0.70 �0.61 0.62 5.13 1.07

7 TI 3 �0.61 �0.62 �0.68 �0.64 0.53 0.64 5.07 1.02

8 TI 4 �0.68 �0.67 �0.76 �0.63 0.58 0.70 0.71 5.16 1.04

9 OCB 1 0.61 0.60 0.64 0.53 �0.55 �0.65 �0.63 �0.66 5.09 1.11

10 OCB 2 0.57 0.55 0.60 0.47 �0.50 �0.66 �0.61 �0.66 0.81 5.24 1.05

11 OCB 3 0.62 0.61 0.68 0.55 �0.55 �0.68 �0.63 �0.72 0.75 0.80 5.18 1.09

12 OCB 4 0.59 0.55 0.63 0.48 �0.54 �0.66 �0.55 �0.64 0.72 0.76 0.73 5.26 1.03

N¼ 629.
MX 6.0

MX is a free downloadable program for
a computer with Microsoft Windows and can be
used to analyze a variety of models with both
continuous and categorical variables.27 MX can

also impute missing data with ML. The graphical
interface for programming, that is, specifying the
model, allows the writing of a program script or

drawing the model. More information and the
download can be found at www.vcu.edu/mx.

Amos 7.0

Version 7 of Amos is a Microsoft Windows
program where a model can be specified by
writing a script or drawing the model.28 The pro-

gram uses an ADF estimator for non-normal data
but cannot analyze ordinal data. A new feature
allows non-numerical data to be analyzed without

having to create numerical values. Amos is li-
censed from the Smallwaters Company to SPSS.
More information can be found at http://
www.spss.com/amos/index.htm.

EQS 6.1

EQS is another Microsoft Windows program
that allows the specification of a variety of

models.21 The user can specify a model by writing
a script, using a programming language generator,
or drawing the model. A variety of new additions

to the program have expanded its capabilities with
version 6.1, such as the multilevel modeling
component. EQS also has a data entry and analy-

sis component. More information and a demon-
stration version can be found at http://
www.mvsoft.com/eqs60.htm.
CALIS

CALIS is part of the SAS comprehensive
statistical package.29 CALIS can analyze a smaller
variety of models compared to other SEM related
packages. Users familiar with programming in

LISREL or EQS will find the transfer to using
CALIS easy because the programming commands
must be typed into an editor window that de-

scribes the data and the model. More information
can be obtained at http://v8doc.sas.com/sashtml/
stat/chap19/index.htm.

LISREL 8.8

LISREL is sometimes called the father of SEM
software programs. It has been around for more

than 30 years and can analyze a variety or data
and models.12 The program has 3 components,
PRELIS, LISREL, and SIMPLIS. PRELIS is

a data screening program and it prepares the
matrices needed for LISREL. LISREL is the
SEM program and the user can write syntax in

the LISREL programming language or specify
a model by drawing it. Users can also use SIM-
PLIS to write the syntax, and instead of using

the LISREL language the user names the ob-
served and latent variables and then specifies the
paths with equation-like statements. A demon-
stration version and other details can be found

at http://www.ssicentral.com/lisrel/index.html.

Conclusion

This paper provides a basic outline and exam-

ple of reporting results for SEM analyses. SEM is
a flexible technique, and there are a wide variety
of analyses that can be completed within the SEM

http://www.vcu.edu/mx
http://www.spss.com/amos/index.htm
http://www.spss.com/amos/index.htm
http://www.mvsoft.com/eqs60.htm
http://www.mvsoft.com/eqs60.htm
http://v8doc.sas.com/sashtml/stat/chap19/index.htm
http://v8doc.sas.com/sashtml/stat/chap19/index.htm
http://www.ssicentral.com/lisrel/index.html
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framework. The basic reporting of information
from the type of data collected to the specific
estimation procedure used is similar across all of
them. It is important for evaluation purposes that

the information related choices made before,
during, and after initial analysis is provided and
justified.
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